

Feature selection and multivariate mapping in neuroimaging

CSML talk September 2012

Jane Maryam Rondina

Features extraction in neuroimaging

• Individual voxels constrained to a specific brain area

• Summarization of anatomical regions of interest

Features extraction in neuroimaging

• Individual voxels in the whole brain

- Normalized images:
 - hundreds of thousands of voxels X few hundreds of examples;
- Challenges related to high dimensionality:
 - Model's performance
 - Interpretation

Feature selection methods in neuroimaging

- Univariate selection
 - *t*-test, F-test, ANOVA
- Recursive Feature Elimination (RFE)¹
 - Recursive elimination of minimum weight voxel
 - Stepsize
- Searchlight²

1 Guyon and Elisseefi, 2003 2 Kriegeskorte, Goebel and Bandettini, 2005

Stability selection

- It is a general theory to address problems related to variable selection or estimation of discrete structure (as graphs or clusters);
- It relies on data perturbation (e.g. sub-sampling) in combination with high-dimensional selection algorithms;
- Its properties are promising to applications involving high dimensional data (specially the *p>>n* case)

Meinshausen, N., Buhlmann, P.: Stability selection. Journal of the Royal Statistical Society. 72 (2010) 417-473

Stability selection

 $\{\hat{S}^{\lambda}; \lambda \in \Lambda\},$ Variable selection in a traditional setting

Definition 1 (Selection probabilities) Let I be a random subsample of $\{1, \ldots, n\}$ of size $\lfloor n/2 \rfloor$, drawn without replacement. For every set $K \subseteq \{1, \ldots, p\}$, the probability of being in the selected set $\hat{S}^{\lambda}(I)$ is

$$\hat{\Pi}_{K}^{\lambda} = P^{*} \big(K \subseteq \hat{S}^{\lambda}(I) \big).$$
⁽⁵⁾

Definition 2 (Stable variables) For a cutoff π_{thr} with $0 < \pi_{thr} < 1$ and a set of regularisation parameters Λ , the set of stable variables is defined as

$$\hat{S}^{stable} = \{k : \max_{\lambda \in \Lambda} \hat{\Pi}_k^\lambda \ge \pi_{thr}\}.$$
(7)

Stability selection using LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO)¹

¹ Tibshirani R. Regression Shrinkage and Selection via $\hat{\beta}^{\lambda} = \operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \|Y - X\beta\|_{2}^{2} + \lambda \sum_{k=1}^{p} |\beta_{k}|, \qquad \text{the Lasso (1996). Journal of the Royal Statistical Society vol 58(1), pgs 267-288}$ *Society*, vol 58(1), pgs 267-288.

Meinshausen, & Buhlmann, 2010

Lasso and Randomised Lasso

Randomised Lasso with weakness $\alpha \in (0, 1]$:

Let W_k be i.i.d. random variables in $[\alpha, 1]$ for $k = 1, \ldots, p$. The randomised Lasso estimator $\hat{\beta}^{\lambda, W}$ for regularisation parameter $\lambda \in \mathbb{R}$ is then

$$\hat{\beta}^{\lambda,W} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \|Y - X\beta\|_2^2 + \lambda \sum_{k=1}^p \frac{|\beta_k|}{W_k}.$$
(13)

Meinshausen, & Buhlmann, 2010

SCoRS (Survival Count on Random Subspace)

Exploring parameters space in SCoRS

$$S = \frac{p}{2^{i} * n}, \text{ where } i = 4, 3, 2, 1, 0, -1, -2, -3, -4$$
(1)

$$I = i * r$$
, where $i = 1 : 9$ and r was fixed as 10^3 (2)

$$T = i * r$$
, where $i = 1 : 9$ and r was fixed as 10^{-1} (3)

- S subspace size I – number of iterations
- T threshold

Exploring parameters space in SCoRS

Classification accuracy

J. Rondina, J. Shawe-Taylor, and J. Mourao-Miranda, "A new feature selection method based on stability theory exploring parameters space to evaluate classification accuracy in neuroimaging data," LNAI Survey of the state of the art Machine Learning and Interpretation of Neuroimaging, vol. 7263, pp. 58–66, 2012.

Exploring parameters space in SCoRS (Number of features through threshold levels)

Dataset 1

B-SCoRS

Classification accuracy

	N features	ТР	TN	Acc
Whole brain	219727	0.63	0.70	0.67
No threshold	210922	0.63	0.70	0.67
T = 0.1	98738	0.67	0.73	0.70
T = 0.2	51094	0.63	0.73	0.68
T = 0.3	29958	0.63	0.73	0.68
T = 0.4	18046	0.63	0.80	0.72
T = 0.5	10704	0.67	0.80	0.74
T = 0.6	6170	0.67	0.77	0.72
T = 0.7	3265	0.67	0.77	0.72
T = 0.8	1473	0.67	0.73	0.70
T = 0.9	461	0.67	0.70	0.68

Data matrix: 219,727 voxels 240 examples

Nested CV for optimizing the number of features

→ Left 1 pair of subjects out of <i>n</i> pairs					
Left 1 pair of subjects out of <i>n</i> -1 pairs					
For each value of parameter in the range					
Run feature selection with n-2 pairs of subjects					
Train classifier with <i>n-2</i> pairs of subjects					
Test with the pair of subjects left out in the inner loop					
Get the value of parameter which produced the best classification accuracy in the inner loop					
Run feature selection with all pairs of subjects but the one left out in the outer loop					
Train classifier					
Test with the pair of subjects left out in the outer loop					

Method	N features	ТР	TN	Acc
SCoRS	12006	0.67	0.77	0.72
RFE	32077	0.73	0.60	0.67

False positive selection

(b)

Spatial mapping

Thanks!