Text mining

Text mining, sometimes alternately referred to as text data mining, roughly equivalent to text analytics, refers to the process of deriving high-quality information from text. High-quality information is typically derived through the divining of patterns and trends through means such as statistical pattern learning. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and interpretation of the output. 'High quality' in text mining usually refers to some combination of relevance, novelty, and interestingness. Typical text mining tasks include text categorization, text clustering, concept/entity extraction, production of granular taxonomies, sentiment analysis, document summarization, and entity relation modeling (i.e., learning relations between named entities).

Time Series Analysis

Timeseries appear in a variety of disciples, from finance to physics, computer science to biology. The origins of the subject and diverse applications in the engineering and physics literature at times obscure the commonalities in the underlying models and techniques. Modern timeseries applications include financial timeseries prediction, video-tracking, music analysis, control theory and genetic sequence analysis.

Handwritten Text Recognition

Many documents used every day are handwritten documents, as for example, postal addresses, bank cheques, medical prescriptions, a big quantity of historical documents, an important part of the information gathered by forms, etc. In many cases it would be interesting to have these documents in digital form rather than paper based, in order to provide new ways to indexing, consulting and working with these documents.

Handwriting text recognition (HTR) can be defined as the ability of a computer to transform handwritten input represented in its spatial form of graphical marks into equivalent symbolic representation as ASCII text. Usually, this handwritten input comes from sources such as paper documents, photographs or electronic pens and touch-screens.